Software
Development’s
Low Hanging Fruit

© 2003-2005 Construx Software Builders, Inc.
All Rights Reserved.

WWW.construx.com

Construx

Delivering Software Proje

Why Talk About
Low Hanging Fruit?




Why Talk About Low Hanging Fruit?

Numerous Good
Practices Have

Existed for Decades
) N

\

&)

Best Practices
(year first available)

+ Project planning and <+ Requirements
management practices engineering practices
+ Automated estimation + Change board (1978)

tools (1973)

. . « Throwaway user
« Evolutionary delivery interf Fototypin
(1988) interface prototyping

(1975)

+ Measurement (1977) .
+ JAD sessions (1985)

+ Productivity
environments (1984)

+ Risk-management
planning (1981)

consulting @ training € software projects 4 construx.com




Best Practices
(year first available, cont.)

< Design practices <+ Quality assurance
+ Information hiding practices
(1972) + Branch-coverage
«+ Design for change testing (1979)
(1979) ¢ Inspections (1976)

< Construction practices <« Process improvement
« Source code control ¢ SW-CMM (1987)

(1980) + Software Engineering
+ Incremental Process Groups
integration (1979) (1988)

consulting @ training 4 software projects ® construx.com

Why Talk About Low Hanging Fruit?

ROI of Good
Software Practices
IS Well Established




ROI for Selected Practices

Practice 12-month 36-month

ROI ROI
Formal code inspections 25 12
Formal design inspections 35 10
Cost and quality estimation tools 25 12
JAD Workshops 2.3 7.5
Process assessments 1.5 6.0
Management training 1.2 5.5
Technical staff training 0.9 5.0
Prototyping (full) 20 5.0

Source: Capers Jones, Assessment and Control of Software Risks, Prentice Hall, 1994.

consulting @ training 4 software projects 4 construx.com

ROI

< Improved software practices pay an
average ROI of 5-to-1 (including false
starts), and continued improvement is
sustainable for many years

<+ The best organizations have sustained
ROIs of 9-to-1 on software improvement
initiatives for many years

Source: James Herbsleb, et al, “Benefits of CMM Based Software Process Improvement:
Initial Results,” Pittsburgh: Software Engineering Institute, Document CMU/SEI-94-TR-13,
August 1994.

consulting @ training € software projects 4 construx.com




Why Talk About Low Hanging Fruit?

These Practices
Should Have Been

Adopted Long Ago...

& |
N

Cycle for Diffusion of
Innovations

consulting @ training € software projects 4 construx.com

10




Normal Risk/Reward Structure

consulting @ training 4 software projects 4 construx.com 11
Software’s Unusual
Risk/Reward Structure

consulting @ training € software projects 4 construx.com 12




Why Talk About Low Hanging Fruit?

... . but Many Good
Practices Have Not Been
Commonly Adopted

Some Software Examples

ccccc lting @ training ¢ software projects 4 construx.com

14




State of the Practice

<+ Lots of proven practices are available

< Risk of not using these practices is
substantially higher than of using them

<+ Many of these tried-and-true practices are
readily available, easy to adopt, and
provide immediate returns

consulting @ training 4 software projects 4 construx.com

15

Why Talk About Low Hanging Fruit?

Does It Seem Like We’'re
Always Talking About
Long Term
Improvements?




Schedule Required to Move
Up One CMM Level

75
Number of 50—
months to move to Largest observed value that is
—T— < notan outlier
the next CMM
Level
30— 26
<&— 75th Percentile
19 e
18— <&— Median
<&— 25th Percentile
— Smallest observed value that is
0 — not an outlier

Level 1to 2 Level 2to 3
76 Orgs 56 Orgs

consulting @ training 4 software projects ® construx.com

17

Example Process
Improvement Results

Median Results (13 organizations)

< Duration: 3.5 years

< Productivity gain per year: 35% (185%
total)

<+ Schedule reduction per year: 19% (52%
total)

< Reduction in post-release defect reports
per year: 39% (82% total)

< Business Value of the Investment: 5.0to 1

consulting @ training € software projects 4 construx.com

18




Why Talk About Low Hanging Fruit?

A
Low Hanging Fruit
Hypothesis

Hypothesis:

The industry focus on “long term
improvements” has created the
impression that improvements are
attainable only in the long term. In
fact, many significant improvements
are attainable in the short term!

consulting @ training € software projects 4 construx.com

20




Low Hanging Fruit

Criteria for LHF

o
%

*

Low cost of adoption

< Good or very good chance of first-time
success

Excellent chance of long term success
< Short time to positive ROI

*

72
°

consulting ¢ training ¢ software projects 4 construx.com

22




Candidates for LHF

< Software Best Practices
<+ Software Fundamentals that aren’t

currently being used

consulting @ training 4 software projects 4 construx.com 23

LHF Candidates, part 1

4GLs
Architectural design

» Buy vs. build planning

Change board

Cleanroom development
Coding standards
Customer orientation
Daily build and smoke test

Defect tracking, full
lifecycle

Designing for change

Education, management
Education, technical staff

Error-prone modules,
identification of

» Estimating tools, use of

*
o

automated

Estimation and
scheduling, accurate

Evolutionary-delivery
lifecycle model

Evolutionary-prototyping
lifecycle model

Feature-set control

consulting @ training € software projects 4 construx.com 24




LHF Candidates, part 2

Goal setting

Hiring top talent
Inspections
Incremental Planning
Incremental Integration

Joint Application Design
(JAD)

Lifecycle model selection
Measurement
Milestones, miniature

Minimal specification
Motivation

Outsourcing

Planning tools, automated
Principled negotiation
Productivity environments
Productivity tools

Rapid-development
languages (RDLS)

consulting @ training 4 software projects 4 construx.com 25

K3
o

K3
o

LHF Candidates, part 3

Requirements scrubbing
Reuse

Risk management, active
Signing up

Software configuration
management, full

Software engineering
process group (SEPG)

Source code control
Spiral lifecycle model
Staff specialization

Staged-delivery lifecycle
model

*

<

X3

%

3

%

3

%

e

A

e

A

e

A

e

A

e

A

3

%

<

Team structure, matching
to project type

Test-first coding
Theory-W management
Throwaway prototyping
Timebox development
Tools group

Top-10 risks list

Project Tracking, Active
Up-front Design

Up-front Planning
Up-front Requirements
User-interface prototyping

consulting @ training € software projects 4 construx.com 26




Is Everything
Low Hanging Fruit?

<+ There are many good candidates for LHF
(58!

< What will constitute LHF from one
organization to the next will vary
« Low cost of adoption

« Good or very good chance of first-time
success

« Excellent chance of long term success
« Short time to positive ROI

consulting @ training 4 software projects 4 construx.com

27

Examples of Fruit That Isn’t
Low Hanging

Practice Why Not LHF?

RUP <+ More like a whole tree than individual fruit

< Not low cost to adopt
< Not high chance of first-time success

Spiral Lifecycle Model |« Not a high chance of first-time success

Developing Code for < Not a short time to positive ROI

Reuse <+ Not a high chance of first-time success or
long-term success

Pair Programming < No evidence of positive ROI
< Not a high chance of long-term success

consulting @ training € software projects 4 construx.com

28




Examples of Fruit That Isn’t
Low Hanging (cont.)

Practice Why Not LHF?

CASE Tools < Not low cost to adopt
< Not a high chance of first-time success or
long-term success

Statistical Process % It’s great fruit, just not low hanging, i.e.,

Control not a short time to positive ROI

Major Milestones < Not a high chance of first-time success or
long-term success

Use Cases < Not a high chance of first-time success or
long-term success

consulting @ training 4 software projects ® construx.com

29

Where Do You
Start?

/&5

@,




Where Do You Start?

Depends on who “you” are:
<+ Developer

+ Technical Lead

<+ Manager

< Organization (Executive)

consulting @ training 4 software projects ® construx.com 31

A Developer’s LHF

Assumptions

< LHF cannot require more than one
contributor

<+ LHF doesn’t create any direct expense

<+ LHF must not create “atomic” work that
would show up on atask list

<+ LHF is minimally visible to management

consulting @ training € software projects 4 construx.com 32




A Developer’s LHF

Can Own: Can Contribute to:
+ Coding Standards % Error.-I.Dror'\e Modules,

- _ Identification of
% Test-First Coding + Defect Tracking, full
<+ Designing for Change lifecycle
% Incremental < Daily Build and Smoke

Integration Test _
< Architectural Design

< Throwaway

< User-Interface Prototyping
_ < Evolutionary Delivery
+ Up-Front Design + Source Code Control Tool

Prototyping

.

consulting @ training 4 software projects ® construx.com

33

A Developer’'s LHF
Observations

<+ ROI of developer-level LHF is relatively
low, but lots of LHF is easily within reach

< Lots of LHF is partially reachable

< Construx has found violent agreement in
upper management that developers
should be using LHF

<+ Most of these practices are invisible to
upper management

consulting @ training € software projects 4 construx.com

34




A Technical Lead’s LHF

Assumptions

» LHF is primarily technical in nature

» LHF doesn’t create any direct expense

LHF may require more than one contributor

LHF may affect detailed task assignments, task
ordering, etc.

» LHF is minimally visible to upper management,
the customer, or other project stakeholders

B3

B3

®.
o

.
o

<

consulting @ training 4 software projects 4 construx.com 35

A Technical Lead’s LHF

Can Own:

+ Coding Standards « Architectural Design

» Test-First Coding + User-Interface Prototyping
» Designing for Change < Evolutionary Delivery

* Incremental Integratlpn < Lifecycle Model Selection
» Throwaway Prototyping .
%+ Inspections

< Up-Front Design ) _ .
+ Error-Prone Modules, <+ Requirements Scrubbing

Identification of < Planning, Incremental
< Daily Build and Smoke < Change Control, Formal
Test % Top-10 Risks List
< Defect Tracking, full
lifecycle

consulting @ training € software projects 4 construx.com 36




A Technical Lead’s LHF
(cont.)

Can Contribute to:

<% Source Code Control
Tool

< Miniature Milestones

< Timebox Development

< Up-Front
Requirements

< Planning, Up-Front

consulting @ training 4 software projects ® construx.com

37

A Technical Lead’s LHF
Observations

<+ Most LHF is reachable by the technical
lead

< Again, most LHF is invisible to executive
management, and implicitly supported by
executive management

<+ Most of it will work better with project
management and executive support

<+ Problem at this level is really choosing
which of numerous options is best—that’s
what expert help is for!

consulting @ training € software projects 4 construx.com

38




A Manager’s LHF

Assumptions

LHF is not highly technical in nature
LHF may create direct expenses
LHF may affect more than one contributor

LHF may affect detailed task assignments, task
ordering, etc.

LHF may be visible to upper management, the
customer, or other project stakeholders

LHF does not require multiple-project span of
control

consulting @ training 4 software projects ® construx.com

39

A Manager’s LHF

Can Own:
< Inspections < Miniature Milestones
<+ Requirements < Timebox Development
Scrubbing % Up-Front Requirements
<> Planning, Incremental < Theory-W Management
<> Change Control, Formal KX P|anning, Up-Front
% Top-10 Risks List « Buy Vs. Build Planning
< Feature-Set Control + Joint Application
< Source Code Control Design (JAD)
Tool

consulting @ training € software projects 4 construx.com

40




A Manager’s LHF (cont.)

Can Contribute to:
< Throwaway Prototyping

< Defect Tracking, full
lifecycle

< Up-Front Design

< User-Interface Prototyping
< Evolutionary Delivery

< Lifecycle Model Selection
» Staff Specialization

» Education, Technical Staff
< Education, Management

consulting @ training 4 software projects 4 construx.com

41

A Manager’s LHF
Observations

<+ Most LHF is reachable by the manager

< Most of the detailed work on the LHF will
need to be done by technical staff

< Main problem here again is too many
choices

consulting @ training € software projects 4 construx.com

42




An Organization’s LHF

Assumptions

<+ LHF is not highly technical in nature

<« LHF may create direct expense

<+ LHF may affect more than one project

<+ LHF may degrade single-project
performance to boost overall organization
performance

consulting @ training 4 software projects ® construx.com 43

An Organization’s LHF

Can Own: Can Contribute to:

< Staff Specialization < Planning, Incremental
» Education, Technical Staff < Defect Tracking, full

+ Education, Management lifecycle

« Planning, Up-Front < Timebox Development
< Buy Vs. Build Planning < Up-Front Requirements
« Change Control, Formal % Theory-W Management

< Top-10 Risks List
< Joint Application Design
(JAD)

consulting @ training € software projects 4 construx.com 44




An Organization’s LHF
Observations

< Most organization-level LHF has high ROI, but
longer lead times (opposite of developer-level
LHF)

< Most detailed work still needs to be done by
technical staff

Bottom Line

< Most of the work to harvest LHF occurs at the
technical lead levels, but that work significantly
benefits from support at the manager,
organization, and developer level

consulting ¢ training € software projects 4 construx.com

45

A Low Hanging
Fruit Basket




LHF that are the Fastest to
Adopt

< Coding Standards

< Daily Build and Smoke Test
< Source Code Control Tool
< Top 10 Risks List

< User Interface Prototyping

consulting @ training 4 software projects ® construx.com

47

LHF that are the Lowest Risk
to Adopt

< Daily Build and Smoke Test
< Defect Tracking

<+ Education, Technical Staff
<+ Inspections

<+ Planning, Incremental

< Source Code Control Tool
< Top 10 Risks List

consulting @ training € software projects 4 construx.com

48




LHF that will Not be Resisted
by Individual Contributors

<+ Change Control, Formal

< Planning, Incremental

< Source Code Control Tool

< Top 10 Risks List
<+ Up-front Design

<+ Up-front Requirements

consulting @ training 4 software projects ® construx.com

49

LHF that will Not be Resisted
by Upper Management

< Coding Standards %
< Incremental Integration %

» User Interface Prototyping
< Defect Tracking

< Up-Front Design

< Architectural Design

< Inspections

< Test-First Coding

2
o3

2
o3

Designing for Change

Error-Prone Modules,
Identification of

% Daily Build and Smoke

Test

» Evolutionary Delivery

2
o3

Lifecycle Model Selection
Planning, incremental
Planning, up-front

Executives can’t resist LHF they can’t see!

consulting @ training € software projects 4 construx.com

50




Summary

Good News

< Practically everything in software
development is fundamentals. There are no
advanced practices.

(This isn’t quite true, but it's pretty close)

< The worse off your organization is now, the
higher the ROI of good practices will be!

< If you’re not currently making substantial use
of good practices, focus on doing anything;
don’t let “the best” become the enemy of “the
good”

consulting @ training € software projects 4 construx.com

52




More Good News

<+ Low hanging fruit is just the beginning.
Once you harvest that, there is still more
fruit higher up

<+ LHF can help an organization “learn how
to change”—which is one of the hardest
aspects of longer-term process
iImprovement

< Construx specializes in helping
organizations identify which LHF is best
for them

consulting @ training 4 software projects 4 construx.com 53

Construx
Consulting Support

% Assessment and Recommendations
(we identify your LHF)

< Improvement Roadmaps

< Project Chartering Workshops

<+ Project Planning Workshops

<+ Requirements Workshops

< Project Scoping & Estimation Workshops
< Best-Practice Deployment Workshops

< Project Recovery

www.construx.com

consulting @ training € software projects 4 construx.com 54




Construx

Delivering Software Project Success

s*Training
s Coaching & Consulting
s Software Projects

sales@construx.com

www.construx.com
+1 (425) 636-0100

consulting @ training 4 software projects 4 construx.com

55




